Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Stimulated Raman projection tomography is a label-free volumetric chemical imaging technology allowing three-dimensional (3D) reconstruction of chemical distribution in a biological sample from the angle-dependent stimulated Raman scattering projection images. However, the projection image acquisition process requires rotating the sample contained in a capillary glass held by a complicated sample rotation stage, limiting the volumetric imaging speed, and inhibiting the study of living samples. Here, we report a tilt-angle stimulated Raman projection tomography (TSPRT) system which acquires angle-dependent projection images by utilizing tilt-angle beams to image the sample from different azimuth angles sequentially. The TSRPT system, which is free of sample rotation, enables rapid scanning of different views by a tailor-designed four-galvo-mirror scanning system. We present the design of the optical system, the theory, and calibration procedure for chemical tomographic reconstruction. 3D vibrational images of polystyrene beads and C. elegans are demonstrated in the C-H vibrational region.more » « less
-
Given a data matrix 𝐷, a submatrix 𝑆 of 𝐷 is an order-preserving submatrix (OPSM) if there is a permutation of the columns of 𝑆, under which the entry values of each row in 𝑆 are strictly increasing. OPSM mining is widely used in real-life applications such as identifying coexpressed genes and finding customers with similar preference. However, noise is ubiquitous in real data matrices due to variable experimental conditions and measurement errors, which makes conventional OPSM mining algorithms inapplicable. No previous work on OPSM has ever considered uncertain value intervals using the well-established possible world semantics. We establish two different definitions of significant OPSMs based on the possible world semantics: (1) expected support-based and (2) probabilistic frequentness-based. An optimized dynamic programming approach is proposed to compute the probability that a row supports a particular column permutation, with a closed-form formula derived to efficiently handle the special case of uniform value distribution and an accurate cubic spline approximation approach that works well with any uncertain value distributions. To efficiently check the probabilistic frequentness, several effective pruning rules are designed to efficiently prune insignificant OPSMs; two approximation techniques based on the Poisson and Gaussian distributions, respectively, are proposed for further speedup. These techniques are integrated into our two OPSM mining algorithms, based on prefix-projection and Apriori, respectively. We further parallelize our prefix-projection-based mining algorithm using PrefixFPM, a recently proposed framework for parallel frequent pattern mining, and we achieve a good speedup with the number of CPU cores. Extensive experiments on real microarray data demonstrate that the OPSMs found by our algorithms have a much higher quality than those found by existing approaches.more » « less
-
Miniature handheld imaging devices and endoscopes based on coherent Raman scattering are promising for label-free in vivo optical diagnosis. Toward the development of these small-scale systems, a challenge arises from the design and fabrication of achromatic and high-end miniature optical components for both pump and Stokes laser wavelengths. Here, we report a metasurface converting a low-cost plano–convex lens into a water-immersion, nearly diffraction-limited and achromatic lens. The metasurface comprising amorphous silicon nanopillars is designed in a way that all incident rays arrive at the focus with the same phase and group delay, leading to corrections of monochromatic and chromatic aberrations of the refractive lens, respectively. Compared to the case without the metasurface, the hybrid metasurface-refractive lens has higher Strehl ratios than the plano–convex lens and a tighter depth of focus. The hybrid metasurface-refractive lens is utilized in spectroscopic stimulated Raman scattering and coherent anti-Stokes Raman scattering imaging for the differentiation of two different polymer microbeads. Subsequently, the hybrid metalens is harnessed for volumetric coherent Raman scattering imaging of bead and tissue samples. Finally, we discuss possible approaches to integrate such hybrid metalens in a miniature scanning system for label-free coherent Raman scattering endoscopes.more » « less
-
Operable under ambient light and providing chemical selectivity, stimulated Raman scattering (SRS) microscopy opens a new window for imaging molecular events on a human subject, such as filtration of topical drugs through the skin. A typical approach for volumetric SRS imaging is through piezo scanning of an objective lens, which often disturbs the sample and offers a low axial scan rate. To address these challenges, we have developed a deformable mirror-based remote-focusing SRS microscope, which not only enables high-quality volumetric chemical imaging without mechanical scanning of the objective but also corrects the system aberrations simultaneously. Using the remote-focusing SRS microscope, we performed volumetric chemical imaging of living cells and captured in real time the dynamic diffusion of topical chemicals into human sweat pores.more » « less
An official website of the United States government

Full Text Available